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Hamiltonian dynamics and the phase transition of theXY model
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A Hamiltonian dynamics is defined for theXY model by adding a kinetic energy term. Thermodynamical
properties~total energy, magnetization, vorticity! derived from microcanonical simulations of this model are
found to be in agreement with canonical Monte Carlo results in the explored temperature region. The behavior
of the magnetization and energy as functions of the temperature are thoroughly investigated, taking into
account finite size effects. By representing the spin field as a superposition of random phased waves, we derive
a nonlinear dispersion relation whose solutions allow the computation of thermodynamical quantities, which
agree quantitatively with those obtained in numerical experiments, up to temperatures close to the transition. At
low temperatures the propagation of phonons is the dominant phenomenon, while above the phase transition
the system splits into ordered domains separated by interfaces populated by topological defects. In the high
temperature phase, spins rotate, and an analogy with an Ising-like system can be established, leading to a
theoretical prediction of the critical temperatureTKT'0.855. @S1063-651X~98!15205-4#

PACS number~s!: 05.20.2y, 64.60.Cn
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I. INTRODUCTION

The two dimensionalXY model, also known as the plana
spin model, presents many interesting behaviors. Despite
presence of a continuous symmetry group, a particular fo
of phase transition exists@1,2#, which can be characterize
by the change in the behavior of the correlation functions
the low temperature phase these latter have power law de
showing that the system is in a long range order state; w
they decay exponentially at high temperatures, the lo
range order is broken, even though thermodynamic qua
ties remain smooth across the transition@3#. These observa
tions have been interpreted by Kosterlitz and Thouless@4#
using an analogy with the transition of a Coulomb gas fr
a dielectric phase, where charges are bounded into dipole
a plasma~conducting! phase where temperature fluctuatio
destroy the dipoles, and the charges become free. In theXY
system the charges are replaced by topological excitat
called vortices.

From the analytical point of view, beyond the spin-wa
approximation@5#, and the Villain model@6#, the use of the
renormalization group in the critical region has been
main issue@7,8#. In order to confirm the analytical result
and to satisfy the need for a better understanding of the t
sition, many numerical studies have been performed. Dif
ent dynamics, like Monte Carlo@9# or Langevin@10#, have
been introduced. The system has been confirmed to be d
nated by spin-wave excitations in the low temperature
gion. The transition region is then determined using the
formation on the correlation functions, and is interpreted
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terms of dipole unbinding. However, there is a number
observations in the literature that seems to complicate
simple picture of the phase transition mechanism. Among
different results, those worth mentioning are the visuali
tion of the vortex distribution@9#, the presence of domain
delimited by topological defects@10#, and the precise deter
mination of the transition temperatureTKT'0.89@11#, much
lower than the transition temperature of the Villain mod
Results are also found on the interaction between vort
@10#, or the vortex interaction energy@12#.

Although the basic mechanism of the Kosterlitz-Thoule
transition, in terms of the breaking of vortex dipoles asso
ated with the emergence of a disordered state, is well un
stood, the observation of the spatial distribution of defec
which is not uniform~defects tend to appear organized in
clusters at temperatures slightly larger than the transi
temperature!, and the presence of large ordered doma
where the spins are almost parallel, seem to indicate tha
physics of the phase transition is not exhausted by this
binding process but that some kind of partial local order
present even beyond the transition temperature. The inv
gation of the system properties near the transition is one
the points addressed in this paper.

On the other hand, the question of whether statisti
physics is able to describe, over a wide range of tempe
tures, the behavior of a classical Hamiltonian system w
many degrees of freedom, still remains an open one~see,
e.g., the literature on the Fermi-Pasta-Ulam model quote
Ref. @13#!. Therefore, it seemed interesting to consider
XY model from the point of view of Hamiltonian dynamica
systems by adding a kinetic energy term to theXY Hamil-
tonian. Such an approach has proved to provide interes
information on typical relaxation time scales and collecti
behaviors in the one-dimensional~1D! case@14# and in the
mean field approximation@15#. More recently Lyapunov ex-
6377 © 1998 The American Physical Society
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6378 57XAVIER LEONCINI, ALBERTO D. VERGA, AND STEFANO RUFFO
ponents have been computed, confirming the presenc
long relaxation times to equilibrium both in the very low an
very high temperature limits in one dimension@16#, and the
presence of a change in slope of the maximal Lyapunov
ponent vs the energy near the transition temperature in
dimensions@17# ~also see also Ref.@18# for a preliminary
study of this latter phenomenon!.

The present model is one of the coupled rotators~spins!
sitting on the sites of a square lattice interacting with n
neighbors, whose statistical properties are described by
microcanonical ensemble, the total energy being set by
initial conditions. Convergence to a Gibbsian equilibriu
distribution is not taken for granted in the whole temperat
range on accessible time scales. Therefore, particular a
tion must be devoted to the temporal behavior of the diff
ent quantities which characterize macroscopic thermo
namical properties. One notices, however, that the spa
topology is unchanged, and that the existence of a cont
ous symmetry group of rotation is also maintained in
dynamics. This implies that a Kosterlitz-Thouless-type tra
sition must be observed~in the thermodynamic limit! with
typically strong finite size effects, like the existence of
nonzero magnetization@5,19#.

In this paper we concentrate on a study of those prope
of the dynamics of theXY model which reproduce equilib
rium features, postponing to a future work the study of no
equilibrium effects. We anticipate that we are able to rep
duce most of the equilibrium behaviors of macrosco
quantities, which makes microcanonical dynamics comp
tive with canonical Monte Carlo, since here we do not ha
to extract random numbers, stochasticity being supplied
the intrinsic chaoticity of the model.

The fact that we actually deal with a dynamical syste
allows us to develop an original analytical approach to
study of the thermodynamics, which is based on the appr
mate solution of the equations of motion. This method
based upon the ergodic properties of the dynamics and on
separation of temporal scales present in the spin motion

In Sec. II we present the Hamiltonian model and the ba
aspects of the numerical computations, and we introduce
thermodynamic and dynamical quantities that characte
the state of the system. In Sec. III we compare the statis
properties of our model to the usual ones, using both ana
cal and numerical approaches. We derive the thermodyna
cal properties using the hypothesis that the dynamics
dominated by random phased waves. We then propose
Sec. IV, an Ising-like model based on the observation th
above the transition, synchronized regions of spins app
The relation ofXY to an Ising-like model allows us to de
scribe the high temperature phase and to derive an app
mate value of the critical temperature. A brief summary
the main results and conclusions is presented in Sec. V.

II. HAMILTONIAN MODEL, BASIC PROPERTIES
AND NUMERICAL COMPUTATIONS

The XY model was introduced in statistical mechanics
a two-dimensional version of the Heisenberg Hamiltoni
The spins are fixed on the sites of a square lattice, and
characterized by a rotation angleu iP@2p,p#,
of
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HXY5J(
~ i , j !

N

@12cos~u i2u j !#, ~2.1!

whereJ is the coupling constant~with J.0 corresponding to
the ferromagnetic case, that we study here!, andi and j label
the N sites of a square lattice of sideAN, i.e., i 5( i x ,i y),
with 1< i x ,i y<AN of coordinates (x,y). The summation is
extended over alli and its neighboring sitesj . In the follow-
ing, without loss of generality, we setJ51, and the lattice
step equal to unity.

The spins evolve in time,u i5u i(t), after adding a kinetic
energy term to theXY Hamiltonian,

H5(
i 51

N pi
2

2
1HXY , ~2.2!

where pi5 u̇ i is the spin momentum. The choiceJ51 is
equivalent to setting time units and to rescaling moment
accordingly~in these units the ‘‘inertia’’ is also unity!. With
this kinetic energy term the spins in fact become rotato
and theXY model becomes a system of coupled rotato
The equations of motion are

ü i~ t !52(
j ~ i !

4

sin@u i~ t !2u j~ t !#, ~2.3!

where the summation is over the four neighborsj of site i . In
addition to the energyH5E, there exists a second consta
of the motion, the total angular momentumP5( i pi , which
can be chosen to be zero. We choose periodic boundary
ditions in both thex andy directions. Numerical integration
of Eq. ~2.3! is performed using the Verlet algorithm, whic
conserves the energyO(Dt2), Dt being the time step, bu
exactly preserves momentum and the symplectic structu

Thermodynamical quantities are computed by averag
over time and over the sites of a single orbit~the evolution of
the system from a given initial condition!. Typically, the
system is started with a Gaussian distribution of mome
and with all the spins pointing in the same directionu i
5u0 , for reasons that are clarified in the following. N
strong dependence on the chosen initial condition in t
class was observed, but one could statistically improve
results by averaging over many orbits with different initi
conditions and the same energy.

The temperature is computed through the average squ
momentum per spin,

T5
1

N (
i 51

N

pi~ t !2, ~2.4!

where the overbar stands for temporal averaging.
The thermodynamical state can be characterized by

eral macroscopic variables: the internal energy per spih
5h(T)5E(T,N)/N ~E being the constant total energy of th
system!; the magnetizationM5M (T,N), which, as men-
tioned in Sec. I vanishes forN→`, but is sizable for any
finite N; and the density of topological defectsrv , or vorti-
ces, which is intimately related to the mechanism underly
the phase transition.

The magnetizationM5(Mx ,M y) is given by
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M[M ~ t !5
1

N (
i 51

N

~cosu i ,sin u i !, ~2.5!

and describe the mean orientation of the spin field. A to
logical defect is identified, as usual, by computing the to
angle circulation on a given plaquette~the sum of the four
plaquette relative angles mod@2p,p#); when it equals
62p, this quantity identifies a positive~negative! unitary
vortex on the plaquette. The total density of vortices, or v
ticity, which is an intensive quantity, is then given by

rv5
1

N (
[ i , j ]

~u j 112u j ! mod@2p,p#, ~2.6!

where@ i , j # denotes the sitesj of the i th plaquette. We have
studied the temporal evolution and spatial distribution of
vortices as a function of the temperature. Because of
periodic boundary conditions, and sinceP50, the number of
positive vortices equals the number of negative ones.

We have performed simulations using various sets of
rameters, to study the system behavior depending on
temperature, the number of spins, and the total time to
the stationarity of the relaxed state. Having chosen para
spins, one has an initially vanishing potential energy, allo
ing the exploration of the low temperature region through
reduction of kinetic energy. Random angles in the@2p,p#
interval would give an energy per spin of 2, which wou
then remain fixed producing a high temperature configu
tion, as can also be deduced from theh(T) function we
compute below~see Fig. 1!. Therefore, initially, the magne
tization is uM u51. Other initial conditions, withuM u50

FIG. 1. Total energy per spin as a function of the temperatu
At low temperature the energy grows asT, and at high temperature
the energy tends toT/212. The Kosterlitz-Thouless phase trans
tion occurs atTKT'0.89; 1, 3, and * signs refer to the Hamil-
tonian dynamical simulations for different lattice sizes,N5642, N
51282, and N52562 respectively; and circles refer to canonic
Monte Carlo simulations for a lattice size ofN51002.
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were investigated, for instance, with half the spins orien
in the x direction, and the other half in the2x direction.
After a transient, the system relaxes to the same thermo
namical state.

In Fig. 1, we plot the total energy per spinh(T). The low
~T!1, T'1 corresponds to the value for which the kine
energy is of the same order of the potential energy! and high
(T@1) temperature behaviors are easy to understand. At
temperature equipartition of kinetic and potential energ
gives h(T)'T ~this is the linear regime, where angles b
tween neighboring spins are small!. At high temperature,
angles are uniformly distributed in@2p,p#, the cosine in-
teraction in Eq.~2.2! is negligible with respect to the kineti
energy, and thenh(T)'T/212. These simple argument
suggest that forT!1, the spin field is almost linear, and ca
be represented as a superposition of waves, which co
spond to phonons; while, forT@1, the potential energy is
negligible, and this field becomes a set of almost free f
rotators. The change in the behavior of theh(T) curve starts
around the Kosterlitz-Thouless critical temperatureTKT . The
peak in the specific heat, related to the second derivativ
the energy, occurs instead at a somewhat higher tempera
a fact well documented in Monte Carlo computations.

Figure 2 shows the absolute value of the magnetization
measured using formula~2.5!. Although in the thermody-
namic limit the magnetization must vanish, in a finite syste
and for low temperature we expect an observable ma
scopic magnetization, which decreases logarithmically w
the number of spins, as noted by Berezinskii@3#. This slow
decrease with system size is hardly observable in Fig. 2,
points corresponding to larger sizes systematically giv
smaller magnetization. In the high temperature region, si
angles are randomly distributed in space at any time,
magnetization vanishes algebraically with the number
spins.

The behavior of vorticity with temperature, plotted in Fi

.

FIG. 2. Absolute value of the magnetization as a function of
temperature. Finite size effects give a finite magnetization at
temperatures. At low temperatures the magnetization decreases
logarithmically with the number of spins.1, 3, and* signs refer to
the Hamiltonian dynamical simulations for different lattice siz
N5642, N51282, and N52562 respectively; and circles refer to
Monte Carlo simulations for a lattice size ofN51002.
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6380 57XAVIER LEONCINI, ALBERTO D. VERGA, AND STEFANO RUFFO
3, is related to the form of theh(T) curve. Indeed, at low
temperature, aligned angle configurations are typical,
consequently vorticity vanishes,rv→0. In the high tempera-
ture regime, spins are randomly distributed and the vor
density approaches the asymptotic valuerv→ 1

3 . A dramatic
growth of the vorticity occurs in the phase transition regi
~the temperature in the rangeT'0.8– 1.5!.

All our results are in perfect agreement with those
Monte Carlo simulations~see, e.g., Ref.@20#!; some of them
are plotted in Figs. 1 and 2 for comparison. Therefore,
crocanonical~Hamiltonian dynamics! and canonical~Monte
Carlo! computations give, at least for the class of initial co
ditions studied here, the same thermodynamical equilibr
states.

III. DYNAMICAL AND STATISTICAL PROPERTIES

We know that, at low temperatures, the main contribut
to the canonical partition function comes from the config
rations in which the spins are almost aligned, configurati
where the angle differencesu i2u j are small. In such a situ
ation, the equations of motion~2.3! can be linearized, and th
spin field is therefore represented as a superposition of lin
waves. Here we will determine the effective dispersion re
tion for these waves at low temperature using consiste
relations with temperature and internal energy. Let us in
duce a representation of the spin angles in the form o
random phased field,

u i5(
k

akcos~ck
i !, ck

i 5kxi2vkt1fk , ~3.1!

where the summation is over the wave vectorsk5(kx ,ky)
52p(nx ,ny)/AN, with nx ,ny51,...,AN integers; the wave
spectrum is given byak , and the phasesfk are supposed to
be random, uniformly distributed in the circle. We al
should add to Eq.~3.1! a term of the formV i t reflecting the
individual rotation of spins with some frequencyV i , which

FIG. 3. Number density of vortices as a function of the tempe
ture normalized to the total number of spins. This quantity is int
sive. 1, 3, and* signs refer to the Hamiltonian dynamical sim
lations for different lattice sizesN5642, N51282, andN52562,
respectively.
d
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f
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m
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-
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in fact can be considered a function of the temperature. H
ever, at low temperature most of these frequencies must
ish, because the energy needed to trigger the free rotatio
only reached at energies of the order ofh52 ~or tempera-
tures of the order ofT51.5, as can be seen in Fig. 1!, when
a spin, considered as a perturbed pendulum, crosses the
ratrix. In the following we setV i50 at low temperature~this
term becomes important at high temperatures!.

Although the main assumption in Eq.~3.1!, that is, the
random character of the wave phases, may only be justifiea
posteriori, we performed some numerical tests whi
showed that this ansatz is consistent with the propertie
the system~at low and also at finite temperatures!. We found
that the probability distribution of the spin velocities is a
most uniform, and that, moreover, the motion of one sin
spin is ergodic~in the sense that its temporal mean and va
ance coincide with the spatial ones!. In addition, if the sys-
tem were linear, this assumption is equivalent to the assu
tion of thermodynamic equilibrium ~with a bath at
temperatureT!. In fact this is the case at very low and ve
high T; of course, in the intermediate range the influence
the nonlinearity becomes important, for instance, establ
ing nonlocal interactions or some type of self-organizatio
in which case this assumption would not necessarily
valid.

In formula ~3.1!, there are two unknown functions of th
wave number which remain to be determined: the wave
quenciesvk and the spectrumak . Note, in addition, that Eq.
~3.1! is in fact a change of variables of the anglesu i to the
amplitudesak , where, implicitly, a slow temporal depen
dence may be included, the fast time dependence being
sured by the phasevkt. In this sense, formula~3.1! is rather
general, and can take into account a large variety of fi
states.

The definition of the temperature imposes a constraint
the form of the wave spectrum. Indeed, substituting form
~3.1! into the definition of the temperature~2.4!, we obtain

T5
1

N (
i

N

^u̇ i
2&5 1

2 (
k

ak
2vk

2 , ~3.2!

where^¯& stands for averaging over the random phasesfk ,
and where we used the identity

^cos~ck
i !cos~ck8

i
!&5 1

2 dk,k8 ,

dk,k8 being the Kronecker symbol. For instance, if equipa
tion of the energy among different degrees of freedom
assumed, one obtains the usual Jeans spectrum, given b

ak
25

2T

Nvk
2 , ~3.3!

which means that each degree of freedom takes a frac
T/2 of the total kinetic energy. In fact, as we will sho
below, a detailed knowledge of the spectrum turns out no
be necessary to derive the dispersion relation and com
thermodynamical quantities.

Before proceeding to the computation of the dispers
relation, let us derive a general expression of the energy
spin h,

-
-



m
nv
e
te

on
g

he

e
ra
et
c

rm
,

is-
of

e
tent

on

the

the
s
t to

ase,

two
re-

two

57 6381HAMILTONIAN DYNAMICS AND THE PHAS E . . .
h5
T

2
122

1

N (
~ i , j !

N

^cos~u i2u j !&, ~3.4!

where the first term comes from the definition of the te
perature; the second term is the constant added for co
nience to the Hamiltonian to make the energy vanish at z
temperature; and the last term includes, for each lattice si
summation over two neighbors, for instance west~in the x
direction! and south~in the y direction!. When expansion
~3.1! is introduced into Eq.~3.4!, the typical contribution to
the sum in the third term on the right hand side is

UN
~ i , j !5K cosF (

n51

N

Akn

~ i , j !sin~Bkn
~ i , j !1fkn

!G L ,

wheren relabel the modes, and

Akn

~ i , j !52 sinFk•~xi2xj !

2 G ,
Bkn

~ i , j !5
k•~xi1xj !

2
1vkt

are local inn and independent on the phasesfkn
. Let us split

the summation over the wave numbers into two terms:
containing the phasefkN

and the other with the remainin

n51,...,N21 phases. Since

^cos@AkN

~ i , j !sin~BkN

~ i , j !1fkN
!#&5J0~AkN

~ i , j !!,
~3.5!

^sin@AkN

~ i , j !sin~BkN

~ i , j !1fkN
!#&50,

whereJ0 is the Bessel function of zero order, we obtain t
recursion relation

UN
~ i , j !5J0~AkN

~ i , j !!UN21
~ i , j ! ,

which readily gives the result

UN
~ i , j !5)

n
J0~Akn

~ i , j !!.

We finally obtain

h5
T

2
122)

k
J0~bx!2)

k
J0~by!, ~3.6!

wherebx52aksinkx/2 andby52aksinky/2, and the last two
products come from north~south! and east~west! neighbors
on the lattice. Equation~3.6! is the general expression for th
energy per spin, as long as the system is dominated by
dom phased waves. We note that in the case of a symm
spectrumakx ,ky

5aky ,kx
~this is the case for the Jeans spe

trum, when the dispersion relation satisfiesvkx ,ky
5vky ,kx

!,
the products of zero order Bessel functions are equal,

v
2

5)
k

J0~bx!5)
k

J0~by!, ~3.7!

wherev is related toh by h(T)5T/2122v(T), and is the
average potential energy. In order to obtain an explicit fo
of the energy per spin as a function of the temperatureh
-
e-

ro
, a

e

n-
ric
-

5h(T), we must determine in a self-consistent way the d
persion relation; this may be done by using the equation
motion in its full nonlinear form. But let us begin with th
linear case, which will serve as a guide to the self-consis
computation. The linear equation of motion reads

ü i5(̂
j &

u i2u j . ~3.8!

Substituting Eq.~3.1!, one obtains

2(
k

vk
2akcosck

i

52(
k

bxFsinS ck
i 1

kx

2 D2sinS ck
i 2

kx

2 D G
2(

k
byFsinS ck

i 1
ky

2 D2sinS ck
i 2

ky

2 D G
524(

k
akFsin2S kx

2 D1sin2S ky

2 D Gcosck
i , ~3.9!

although the linearity of the equation allows an identificati
term by term in the summation overk, a different strategy
for the solution would be to average Eq.~3.9! over all the
phases but one, e.g., over the phasesfk8Þfk after multiply-
ing both sides by cosck

i , in order to isolate only one term in
the summation on the left hand side. One finally obtains
linear dispersion relation

vk5v0k54S sin2
kx

2
1sin2

ky

2 D . ~3.10!

The frequency spectrum is symmetric with respect to
exchangekx↔ky ; in the following we assume, without los
of generality, that the spectrum is symmetric with respec
this transformation.

This procedure can be generalized to the nonlinear c
although the right hand side of Eq.~2.3! is no longer local in
fk . After substituting expansion~3.1! into Eq. ~2.3!, we
must average over the phasesfk8Þfk , which we denote
^¯&8, terms of the form

^sin~u2uE!&852K sinF(
k

bxsinS ck1
kx

2 D G L 8
,

~3.11!

where uE is, e.g., the east neighbor of angleu, having a
phasecE5ck1kx5kx1kx2vkt1fk . We now split the
summation in Eq.~3.11! into a term containing the phasefk
and others, and develop the sine of the summation of
terms into a product. The averaging of these two terms
duces to

K cosF(
k8

bxsinS ck86
kx8

2 D G L 8
5

v
2J0~bx!

, ~3.12!

because the averaging of the sine term is zero. The
neighbors in thex direction ~west and east sites! give the
following expression:
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^sin~u2uE!&81^sin~u2uW!&8

52
v

2J0~bx!
H sinFbxsinS ck1

kx

2 D G
2sinFbxsinS ck2

kx

2 D G . ~3.13!

Those in they direction give exactly the same contributio
with bx→by . On the other hand, the left hand side of E
~2.3!, the temporal part of the equation of motion, is reduc
after substitution of the random wave expression, to

^ü i&52vk
2akcosck

i . ~3.14!

As before, in the linear computation, we multiply both sid
of the equations of motion~3.14! and ~3.13! ~including the
similar terms for the north and south neighbors!, by cos(ck

i ),
and average over the phasefk , noting that this average in
volves first order Bessel functionsJ1 . We finally find the
desired dispersion relation

vk
2ak52vFsinS kx

2 D J1~bx!

J0~bx!
1sinS ky

2 D J1~by!

J0~by!G .
~3.15!

This dispersion relation is nonlinear, i.e., the frequency
pends on the spectrum amplitudes, in two ways: implic
through theak’s in v and explicitly in the Bessel functions
To go further, let us investigate the dependence of the a
ments of the Bessel functions on the parametersT and N,
and the related limiting form of the total energy per spinh.
We know thatv, being an intensive thermodynamic qua
tity, does not depend on the number of spins~the size of the
system!; moreover, the linear frequency~3.10! is bounded
from below,v0k

2 ;sin2(kx/2).O(1/N). We also note, as it is
natural for a system near an equilibrium state, that a la
number of k modes must contribute to the energy of t
system, and then in general we haveak

2sinkx/2→0 whenN
→`, for a large range of temperatures. If this were not
case, the energy would be concentrated in a few higk
modes, which is clearly in contrast with the observations.
the Jeans spectrum, one finds specificallyak

2sinkx/2
'O(T/AN). Using these approximations, we can now d
velop the logarithm of the product of the Bessel functions
Eq. ~3.7! to obtain

v52 expH 2 1
8 (

k
ak

2v0k
2 J . ~3.16!

In the same approximation, for fixed temperatures and la
lattices, the dispersion relation~3.15! reduces to

vk
25

vv0k
2

2
. ~3.17!

Introducing this expression into formula~3.16! for v, and
using the definition of the temperature in terms of rand
phased waves@Eq. ~3.2!#, we obtain an implicit equation fo
the potential energy,
.
,

-

u-

e

e

r

-

e

v52 expF2
T

2vG . ~3.18!

We notice that the nonlinear dispersion relation reduces
the linear one forT50. The nonlinear effects, taken int
account in Eq.~3.17!, appear as a renormalization of th
phonon frequency~energy! due to the coupling of the
phonons with a thermal bath created by the other phonon
in a mean field. We also note that the factor 2, found in
right hand side of Eq.~3.18! and in the exponent, can b
related to the lattice dimensionality~it results from the addi-
tion of the x and y terms!. Moreover, as we anticipated
formula ~3.18! does not depend explicitly on the form of th
spectrumak .

Let us now investigate the implicit equation~3.18! by
solving it numerically. In Fig. 4, where the energy densityh
versus the temperatureT is plotted using formulash5T/2
122v(T) and Eq.~3.18!, we see three branches accordi
to the solutions of Eq.~3.18!. Although the three branche
are in principle acceptable solutions, they would have diff
ent ‘‘weights.’’ For instance, if one associates to each bra
a Gibbsian probability, proportional to exp(2hi /T), wherehi
denotes the branch energyi 50, 1, and 2, the lower branch
has, at a given temperature, the higher probability. T
choice of a Gibbsian probability distribution of states is n
in contradiction with our microcanonical approach. Indee
the energieshi are related tomacroscopicequilibrium states,
and the Gibbs probabilities represent the best choice, ta
into account the usual constraints of maximal entropy a
normalization.

The straight line corresponds to the solutionv50, which
represents a random spin field. Indeed, in the high temp
ture region, since the potential energy is bounded, we
expect that the rotators are freely rotating without any ord

FIG. 4. Plot of the energy density vs temperature compu
from Eq. ~3.18!. The straight line characterizes the random fie
state, the lower branch the phonons~spin waves!, and the upper
branch the lattice excitations of the vortex dipole type.
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i.e., that (u i2u j ) is random with constant distribution in@0,
2p!. This gives us an energy densityh5T/212 and
v(T)50. The implicit solution of Eq.~3.18! thus extrapo-
lates the good asymptotic behavior of the energy for h
temperature to low temperature regions. This solution ex
for any temperature, but in the low temperature region a s
configurations associated with this branch should be unst
~in the sense that for general initial conditions, as in o
numerical computations, the system cannot evolve to
state!.

Below a certain temperatureT5Tw , we also see that two
other branches appear. As the lower branch has the hi
probability, in the low temperature region we may expect
lower energy branch, which we call the phonon branch, to
the physical relevant solution, and the third branch to h
no physical meaning at all. However, if we now consider t
in fact the lattice is populated with two types of species
different energiesh1(T) and h2(T) corresponding to the
lower ~phonons! and upper~which we call vortex! branch,
respectively, we obtain

h5
h1e22h1 /T1h2e22h2 /T

e22h1 /T1e22h2 /T , ~3.19!

which is almost in total agreement with the numerical d
up to Tw , as we can see in Fig. 5.

The upper branch can be related to ‘‘dipole vortices
since it starts at an energy equal to 2~see Fig. 4!, corre-
sponding to a lattice composed by topological defects fo
ing a perfect crystal@u i2u j56p/2 and( j ( i )sin(ui2uj)50
overall the lattice#. This crystal state, which is in fact a pe
riodic array of dipoles, is a stationary solution of the equ
tions of motion atT50, around which no linear developme
can be made~the linear term is zero, vortices can be cons
ered as nonlinear particles!. The factor 2 in the exponents o
Eq. ~3.19! takes into account that vortices come in pairs~di-
poles at low temperature! on the lattice in order to conserv
the total circulation.

FIG. 5. Plot of the energy density vs the temperature. T
circles refer to the numerical data, the dashed line to the pho
branch of Eq.~3.18!, and the solid line to the theoretical averag
density of energy@Eq. ~3.19!#.
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The temperatureTw determines the upper border of th
wave dominated regime; above this temperature the w
branch disappears~as well as the vortex dipole branch!. In
order to determineTw , precisely it is useful to rewrite Eq
~3.18! as a formula for the temperature in terms ofv,

T522v ln~v/2!. ~3.20!

If we now calculate the extremum ofT(v) for 0,v,2, we
obtain, for v52/e5Tw/2, T5Tw54/e'1.47, which is ex-
actly the critical temperature found in Ref.@21# using a
Hartree-Fock approximation. This temperature also appe
with the use of renormalization techniques in Ref.@22#. In
this case, we note that the equation forv is formally identical
to the one for the renormalization constant in this renorm
ization group calculation. However, the two methods are
sically different, and in particular the relation betweenv and
the dispersion relation~3.17!, allows us to obtain more pre
cise information on the different thermodynamical quantit
of the system. For instance, as mentioned above, the rela
betweenv and h, which is different from the relation be
tween the renormalization constant and the energy, leads
very good description of theh(T) curve up toTw .

Let us now evaluate the magnetization for a finite s
system with periodic boundaries using the same approac
before: we assume that the spin field can be represented
superposition of random phased waves~3.1!. We callu0 the
average over the lattice of theu i ; it is a constant, since the
total momentum is conserved. An average of the magnet
tion over the random phases brings up a calculation sim
to the one for the energy per spin, and leads to

^M &5)
k

J0~ak!~cosu0 ,sin u0!. ~3.21!

This expression remains exact as long as the rand
phase approximation is valid. In order to develop the log
rithm of this expression, we have to take into account t
ak

2,O(T), which implies that the development is only val
in the low temperature regimesT!1. Moreover a detailed
knowledge of the spectrum is also required. Therefore, c
sidering the observed almost flat spectrum of the moment
we assume the equipartition of the kinetic energy among
modes and use the Jeans spectrum given in Eq.~3.3!. The
absolute value of the magnetization,^uM u&, is given by the
product over the differentk of the Bessel functions. In the
low temperature regime, using Eqs.~3.17! and~3.3!, we ob-
tain, for its logarithm,

ln~^uM u&!52(
k

ak
2

4
52

T

2N (
k

1

vk
2 52

T

v
G~0!,

~3.22!

whereG is the Green function of the linear wave equatio
G(r )5(kexp(ik•r)/v0k

2 , with G(0)5(1/4p)ln(2N). The ex-
pression for the magnetization is then

^M &5S 1

2ND T/4pv

~cosu0 ,sin u0!. ~3.23!

e
n
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A plot of this expression, scaled in order to obtain a fun
tion of the temperature,24pv ln(M)/ln(2N), is shown in
Fig. 6 ~top!. Within the errors of the numerical data, th
points collapse, at low temperature, to a unique curve. Re
~3.23!, obtained including the correction due to the nonline
contribution to the dispersion relation, substantially improv
the usual estimation based on the linear wave approxima
~see the bottom of the figure!. The agreement of the theore
ical results and the numerical data can be made more pre
by taking into account the different energy branches. Inde
if we now take into account that the lattice is populated
two types of species, we can consider that only the phon
contribute to the magnetization, vortex dipoles having to
magnetization zero. As the density of phonons is given
n15e22h1 /T/(e22h1 /T1e22h2 /T), the observed magnetiza
tion must then be simplyn1M . The absolute value of this
quantity is plotted in Fig. 6~bottom!. The agreement with
numerical data is valid up to the critical temperature.

In the same way we compute the averaged absolute v
of the magnetization,

^uM u2&5
1

N2 (
i , j

^cos~u i2u j !&,

FIG. 6. Finite size effects on the magnetization. The upper p
shows24pv ln(M)/ln(2N) as a function of the temperature; th
line refers to formula~3.23!; 1, 3, ands refer to numerical data
for lattice sizes of N5642, N51282, and N52562, respect-
ively. The lower plot showsM (T); circles are for aN52562

lattice. The thin line is the analytical result, and the dotted line
the result using only the contribution of linear spin wave
M5exp[2T ln(2N)/8p].
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and we obtain the expression

^uM u2&5
1

N2 (
i , j

)
k

J0F2aksinS k
xi2xj

2 D G , ~3.24!

which, in the low temperature regime, assuming a Je
spectrum, and making the same expansion as in Eq.~3.22!,
leads to

^uM u2&5
1

N2 (
i , j

expS 2
2T

v
G~r i j ! D ,

wherer i j 5xi2xj . A first order calculation leads to the sam
result as Eq.~3.23!, implying that the variance Var(M )
[^uM u2&2u^M &u2 vanishes at leading order in the temper
ture. However, at finite temperature, the two values can
fer, and the variance of the magnetization can have a non
value. This variance can moreover be used to characte
the phase transition, since it is the average over the lattic
the correlation function̂eu i2u j&; it is also related to the sus
ceptibility x[(N/T)Var(M ). Indeed, in Fig. 7, we plot the
magnetization variance as a function of the temperature,
find that up to temperatures of the order of the Kosterli
ThoulessTKT , the variance remains very small, and, su
denly, it grows aroundTKT . This behavior suggests that th
magnetization is distributed almost like ad function, in the
low temperature regime~all the spins are pointing to the
same direction!, and that, near the transition, the amount
randomly oriented spins increases dramatically. Higher or
effects on the variance of the magnetization can be comp
using the identity

J0~2z sin a!5J0
2~z!1 (

m51

`

Jm
2 ~z!cos~2ma!,

which gives, after replacing it into Eq.~3.24!,

t

s
:

FIG. 7. Plot of the variance of the magnetization vs the tempe
ture (N51282). The transition region (T'1) is clearly identified.
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Var~M !5u^M &u2S 1

N2 (
i , j

)
k

@11Mk~r i j !#21D ,

where

Mk~r i j !5(
m

Jm
2 ~ak!

J0
2~ak!

cos~mkri j !.

To the first nonvanishing order (m51), we obtain

Var~M !52S T

vND 2

u^M &u2(
k

1

v0k
4 .

This allows us to compute an approximate value of the s
ceptibility x,

x'3.871023
T

v2 ~2N!~12T/2pv !.

A similar result can be found in Ref.@23#, in the limit v
→2.

Concerning the density of vortices, we can see in Fig
that aroundT'1.3 the curve has an inflexion point. Th
change in the number of defects may be explained as
lows. Let us consider a single plaquette. A defect may app
when the four angles are in increasing~decreasing! order,
and the last angle is larger~smaller! thanp (2p), if the first
angle is set to zero. In our model, due to the continu
symmetry group, no particular direction is favored, a
therefore the successive differences between the angleu i
2u j ~discrete gradients! are all equivalent. A defect is the
obtained when these gradients satisfy~on average!
^uu i2u j u&.p/3. At low temperatures, the amplitudes of th
local gradients are determined by the phonons and bec
steeper at higher temperatures, reaching a point where
are large enough to generate the vortices. Using the prev
results, we calculate the temperature for which this condit
is reached,

^~u i2u j !
2&52(

k
ak

2sin2
kx

2
5

T

v~T!
5

p2

9
. ~3.25!

If we now substitute this result into Eq.~3.18!, we find

T5
2p2

9
expS 2

p2

18D'1.27, ~3.26!

which is in very good agreement with the position of t
inflexion point in the numerical data. One may consider t
around this temperature a proliferation of vortices sho
occur.

IV. PHASE TRANSITION

The usual physical picture of the Kosterlitz-Thouless tra
sition is based on the unbinding of vortex pairs: below
critical temperature long range correlations are establis
by spin waves, the phonons in our Hamiltonian model; ab
the critical temperature long range order is destroyed by
proliferation of free vortices. This simple physical picture
the mechanism of the transition does not exhaust the c
s-

3

l-
ar

s

e
ey
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n

t
d

-
e
d
e
e
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plex processes related to the appearance of a kind of
organization in the system: the vortex distribution is not u
form; vortices form clusters which separate domains
relatively well ordered spins. In this section we study, us
numerical simulations, the spatial distribution of topologic
defects and the equilibrium configurations of the system,
ing an Ising-like model, in order to describe the partial ord
which is still present aboveTKT .

In Sec. III, we showed that the ordered state of the sys
is dominated by phonons, and that a second type of exc
tions, the vortex dipoles, is also present. The energies of
two branches meet at a temperatureTw , above which both
modes disappear, suggesting that a phase transition to a
ordered state might occur. Within this picture,Tw would thus
be the temperature where the unbinding of vortex dipo
appears, destroying the long range order created by
waves. However, the actual transition temperatureTKT is
much lower thanTw , indicating that other processes, n
included in the representation~3.1! of the spin motion, take
place.

Indeed, in this low temperature analysis we have omit
the rotation of the spin, excluding terms of the formV i t.
Moreover, most significantly, we have assumed that
phases of the spin field were random and uncorrelated f
site to site, thus neglecting the influence of organized s
motion. Although the proliferation of vortices breaks th
long range order, the spin field can still be organized in
domains~where the spins rotate synchronously! separated by
lines of vortices. The phase transition would be associate
this case, with the appearance of a self-organized s
where, although long range order is absent, a kind of pa
local order, established by separated domains of cohe
spins, sets in.

We consider this possibility and study the spatial distrib
tion of defects around the critical temperature. By direct
sualization of the spin fieldmi5(cosui ,sinui), we noted that
the number of isolated defects is negligible, and that th
often appear to be in small clusters along the domain bord
~this may already be seen in Fig. 7 of Ref.@9#!. The problem
one encounters with a direct visualization is that the sp
move too fast to allow the observation of coherent structu
To gain some further insight, we then introduce a new di
nostic to visualize the spatial structures correctly. We upd
each spin of the lattice with one fifth of the sum of itself a
its four nearest neighbors, and repeat this operation a
times, to obtain an effective local magnetization centered
the considered spin. This local average magnetization is t
defined by the iteration

mi
~n11!5

1

5 Fmi
~n!1(

j ~ i !

4

mj
~n!G , n51,...,l ,

wherej ( i ) are the four neighbors of sitei , and the number of
iterations is typically l 510. The resulting fieldmi

( l ) is
smoother than the initial fieldmi

(1) ; at these temperatures th
amplitude of spin motion is large, and it defines a direction
a given site, weighted by the orientation of the surround
spins.

The effective spin field is shown in Fig. 8. The upp
plots are linear gray scale images of the quantity sin2(2ui

(l))
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FIG. 8. Spatial distribution of the local magnetization, showing the domains and the interfaces~see text!. ~a! and ~c! Orientation
@sin2(ui

l/2)#; one passes from white to black by a rotation ofp/4. ~b! and ~d! Intensity (umi
( l )u); disordered regions are shown in black.~a!

and ~b! T51.02. ~c! and ~d! T51.29.
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~see also Ref.@10#!, whereu i
( l ) is the angle of the local mag

netization, and the bottom ones are images of the quan
umi

( l )u. In the upper plots we can easily locate the vortices
looking at pinching of the darker and brighter areas. Th
appear to be all bounded in dipoles or chains of dipoles.
presence of these chains can be interpreted as the bir
interfaces separating domains with local order. These la
are more visible in the bottom images, where the brigh
regions characterize strong local magnetization, and th
fore locally aligned spins; while the darker regions, whe
the orientation of spins change rapidly with position, indica
the presence of vortex defects and disorder. In the left
ages, representing a system ofN51282 spins at a tempera
ture slightly above the critical temperature,T51.02, we see
that the disordered regions are highly concentrated, and
they tend to connect themselves along lines. This tenden
even more clear in the right images, where we show a sys
at T51.29. We also note that the size of the ordered regio
the domains, are much smaller at higher temperatures. AT
51.02, the domains occupy connected regions of a size c
parable to that of the whole system; at higher temperat
the domains are instead confined in localized regions.

At higher temperature the weight of random regions
creases, and the size of domains is reduced. In this reg
since the density of the potential energy is bounded, mos
ity
y
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the energy is kinetic, and therefore most of the spins are f
rotating, with similar amplitudes. This is illustrated in Fig.
where the typical temporal behavior of one spin in a hi
temperature field is shown. Conversely, at low temperatu
angles remain bounded in time. On the other hand, the
momentum takes essentially constant values~positive or
negative ones, depending on the sense of rotation!. The in-
dividual behavior of the spins also reflects the statisti
properties of the system. The angle variance is bounde
low temperatures, in agreement with the random phase
proximation, while it steadily increases in time at high tem
peratures, as we can see in Fig. 10. In analogy with
properties of a perturbed pendulum, the change of the to
ogy of trajectories is related to the crossing of a separat
Below a certain value of the energy densityhc @hc
5h(TKT)'1 in our model#, the spins are collectively
trapped, and, after the transition, as the behavior of the to
logical defects suggests, they start to rotate in organized
mains, whose size progressively decreases as the energy
sity increases.

An important consequence of these results is that the
tem, at these temperatures, can be represented by loca
dered regions of synchronized spin motion, and random
terfaces where the defects accumulate. To these rotating
domains, one may add some level of fast~with respect to the
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time scale of rotation! fluctuations characterized by an effe
tive low temperatureT̃, which takes into account the poten
tial energy. In this context we may introduce relevant va
ablessi , which take the values61 according to the sign o
spin rotationu̇ i . It is important to keep in mind that th
system is considered to be in its thermodynamical state,

that the temporal average of spin rotation velocityu̇ i
25T is,

using ergodicity, independent of the spin site. We can t
assume that the angle velocity is of the formu̇ i5V i

'siAT, and write

u i5siVt1 ũi~ t/e!, ~4.1!

whereV5AT, ande characterizes the fast temporal fluctu
tions of the functionũi , i.e., ueu!1 and u ũi(t/e)u!siVt

~see Fig. 9!. The field ũi is in fact similar to theu i used in
Eq. ~3.1!, but associated with another temperatureT̃: in a
rotating reference system, attached to each domain~where all
the si ’s are equal!, it is an effective ‘‘low temperature’’XY
spin field.

The introduction of a new fieldsi561, which labels each
lattice site by the sign of the spin rotation, suggests an a
ogy between the high temperatureXY system and the Ising
model. We will exploit this analogy to construct a mod
aimed at describing the complex properties of the sys
near the Kosterlitz-Thouless transition, which do not resu
to the simple unbinding mechanism of dipole vortices.

In order to map theXY system into an Ising system, w
take advantage of the time scale separation between the
tive slow rotation and the fast thermal fluctuations. Let
now average the potential energy over a few rotation perio
during which the approximation made in Eq.~4.1! remains
valid. For that purpose, we are reduced to computing
average of terms of the form

FIG. 9. Typical temporal behavior of a rotator at high tempe
ture. Top: spinu i(t) at the central site forT54.100, measured in
units of 2p. The spin rotates in the same direction and with

almost steady speed for long periods of time. Bottom: plot ofu̇ i(t)
showing that its fluctuations are fast compared to the evolution
u i .
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cos~u i2u j !5cos@~si2sj !Vt#cos~ ũi2 ũj !

2sin@~si2sj !Vt#sin~ ũi2 ũj !, ~4.2!

where i and j denote two neighbors. The fast temporal b
havior of theũi ’s assures its fast thermalization at a temper
ture T̃, and decorrelates the two terms in each product. T
allows us to split the time average in two steps, first on
fast time dependence and then on the slower time scale.
first average leads to

cos~ ũi2 ũj !5
v~ T̃!

2
, sin~ ũi2 ũj !50,

where we use the results of Sec. III, due to the effective l
temperatureT̃ within a domain. Then the mean of cos@(si
2sj)Vt# is zero if the two spins do not rotate in the sam
direction~do not belong to the same domain!, and one if the
two spins corotate, which means that the average of
terms can be represented by a Heaviside functionQ(sisj ).
We then obtain the expression

v̄5
1

2N (
^ i , j &

cos~u i2u j !5
v~ T̃!

4N (
^ i , j &

Q~sisj ! ~4.3!

FIG. 10. The spatial variance ofu vs time is plotted for different
temperatures. At the bottom we have the plot forT50.4783, while
on top the one forT52.7905. The numerical data are obtained f
a lattice size ofN52562. We clearly see that the variance ofu is an
increasing function of time only forT.TKT .
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for the mean interaction energy, where the summation
over all neighbors, and the Heaviside function just states
only synchronized, corotating spins contribute to the av
aged potential energy. Using the identityQ(sisj )5(1
1sisj )/2, we finally obtain an effective Hamiltonian

He5NS T

2
122

v~ T̃!

2
D 2

v~ T̃!

4 (
^ i , j &

sisj . ~4.4!

We notice that this effective Hamiltonian is the sum of tw
different terms, which we denoteHT andHI . The first term
HT depends on the temperature, the size of the lattice,

v( T̃), and can therefore be considered as an energy re
ence term. The second termHI introduces a coupling energ
between the spins, and can be recognized as a ferromag
Ising-like Hamiltonian whose coupling constantJI(T)
5v( T̃)/4 is a function of the temperature. Using an Isin
terminology, we now have a population of spinssi561,
interacting with their close neighbors on a square latti
Therefore, under the assumption of ergodicity and tak
into account that spins rotate on a well separated time s
with respect to their fluctuations, we have mapped theXY
system into a Ising-like model; these two models are link
through a coupling constant dependent on a temperatur
lated to fluctuations. We shall note that the time depende
of the Hamiltonian is masked, but thesi ’s are still functions
of time, and we still are within the microcanonical ensemb
Invoking again the thermodynamical equilibrium, and t
fact that both the microcanonial and canonical approac
lead to the same thermodynamic limit, we can now contin
our study within the canonical ensemble.

As is well known, the Ising model undergoes a pha
transition and generates a spontaneous magnetizationMI
whenJI /T.b Ic'0.44 @24#. In order to know if the presen
Ising system reaches the transition, we have to investig
the behavior ofv( T̃). The previously observed domain
~Fig. 8! are in agreement with the phenomenology of t
Ising model above its transition, the maximum value of t
coupling constant beingv( T̃)/4, 1

2 implies that both models
are surely in their high temperature states forT.1/2b Ic
'1.14. In the low temperature regime, none of the spins
rotating;T5 T̃andv I5v, and all the potential energy is du
to the waves. We know that the energy is continuous thro
the Kosterlitz-Thouless transition and also through the Is
transition. As a consequence, we expect thatv(TKT)5v( T̃)
at the transition temperature. Moreover, the effective dom
temperatureT̃ has to be an increasing function ofT, and
then v I is a decreasing function ofT; in order to obtainh

5T/212 at high temperature,v( t̃) has to vanish asT
→`. The equation

JI /T5v~ T̃!/~4T!5b Ic ~4.5!

therefore has a unique solution. A calculation ofTKT , using
is
at
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es
e

e

te

e

re

h
g

in

Eqs. ~4.5! and ~3.18!, gives TKT'0.855, which is in good
agreement with the numerical value ofTKT'0.898 found in
the literature.

There is, however, an important difference between
usual Ising model, and the present one, derived from theXY
system. It is the global constraint associated with the con
vation of the total momentum. The mean value of the to
momentumP50 is given by 05(u̇ i5(si . But this last
expression is precisely the Ising magnetization

MI5
1

N (
i

si50, ~4.6!

which means that only symmetric distribution of positive a
negative spins are allowed. This constraint prevents the
tem from undergoing, as in the Ising model, a second or
phase transition, with the spontaneous appearance of a
roscopic magnetization below the critical temperature. In
present case, this would mean that a significant fraction
the spins would rotate in a preferred direction, but Eq.~4.6!
forbids this kind of phase transition, and forces the system
accommodate to a vanishing magnetization. In fact, w
happens is that, below the transition temperature, the s
cannot fully rotate, domains disappear, and the long ra
order is established by a reorganization of spin motions
the form of spin waves, which can still generate a nonint
sive finite-size magnetization.

V. CONCLUSION

In this paper we took a dynamical point of view to an
lyze the statistical properties of theXY model. This approach
has the advantage of offering a natural physical framewo
From the structure of the evolution equations of the sp
~which become coupled oscillators in the linear approxim
tion!, one is prompted to consider the phonons~propagating
waves in the lattice! as the basic excitation at low temper
ture. In the thermodynamic limit, and assuming that the s
tem reaches an ergodic equilibrium state, it is reasonabl
introduce random phases in the waves. Using this ba
mechanism, we obtained a nonlinear dispersion relation c
taining the fundamental physics of the system. Macrosco
quantities, such as the energy and the~finite size! magneti-
zation, are well described by this method up to temperatu
close to the Kosterlitz-Thouless critical temperature.

On the other hand, for high temperatures, our dynam
approach allowed us to map theXY model into an Ising
model with a coupling constant depending on the tempe
ture. This relation to an exact model is beneficial to und
standing the physics near the transition, and moreover
mits an analytical computation of the critical temperature,
excellent agreement with Monte Carlo simulations.

These results lead to a physical description of
Kosterlitz-Thouless transition in terms of the change from
ordered state~long range correlation are established by t
wave excitations! to a local ordered state where macrosco
domains are separated by interfaces populated with topol
cal defects. Topological defects have then a tendency to b
themselves in clusters. The generation of disorder by
unbinding of dipoles is accompanied by the fragmentation
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the low energy unique domain of nonrotating spins into se
rated regions of synchronized rotating spins.
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Jauge~CNRS, Paris, 1988!.

@3# V. L. Berezinskii, Zh. Eksp. Teor. Fiz.59, 907 ~1970! @Sov.
Phys. JETP32, 493 ~1971!#.

@4# J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!.
@5# V. L. Berezinskii, and A. Ya. Blank, Zh. Eksp. Teor. Fiz.64,

725 ~1973! @Sov. Phys. JETP37, 369 ~1973!#.
@6# J. Villain, J. Phys.~Paris! 36, 581 ~1975!.
@7# J. M. Kosterlitz, J. Phys. C7, 1046~1974!.
@8# P. Minnhagen, Rev. Mod. Phys.59, 1001~1987!.
@9# J. Tobochnik and G. V. Chester, Phys. Rev. B20, 3761~1979!.

@10# B. Yurke, A. N. Pargellis, T. Kovacs, and D. A. Huse, Phy
Rev. E47, 1525~1993!.

@11# P. Olsson, Phys. Rev. Lett.73, 3339~1994!.
@12# H. Weber and H. Jeldtoft Jensen, Phys. Rev. B44, 454~1991!.
@13# J. Ford, Phys. Rep.213, 271 ~1992!.
@14# D. Escande, H. Kantz, R. Livi, and S. Ruffo, J. Stat. Phys.76,
605 ~1994!.

@15# M. Antoni and S. Ruffo, Phys. Rev. E52, 2361~1995!.
@16# L. Casetti, C. Clementi, and M. Pettini, Phys. Rev. E54, 5969

~1996!.
@17# Ch. Dallago and H. Posch, Physica A230, 364 ~1996!.
@18# P. Butera and G. Caravati, Phys. Rev. A36, 962 ~1987!.
@19# S. T. Bramwell and P. C. W. Holdsworth, Phys. Rev. B49,

8811 ~1994!.
@20# S. T. Bramwell and P. C. W. Holdsworth, J. Phys. Conde

Matter 5, L53 ~1993!.
@21# S. Samuel, Phys. Rev. B25, 1755~1982!.
@22# D. Spisak, Physica B190, 407 ~1993!.
@23# P. Archambault, S. T. Bramwell, and P. C. W. Holdsworth,

Phys. A: Math. Gen.30, 8363~1997!.
@24# L. Landau and E. Lifschitz,Physique Statistique~Ellipses,

Paris, 1994!.


